Maggot Excretions Inhibit Biofilm Formation on Biomaterials

نویسندگان

  • Gwendolyn Cazander
  • Mariëlle C. van de Veerdonk
  • Christina M. J. E. Vandenbroucke-Grauls
  • Marco W. J. Schreurs
  • Gerrolt N. Jukema
چکیده

BACKGROUND Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. QUESTIONS/PURPOSES We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. METHODS Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. RESULTS The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. CONCLUSIONS Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of maggot excretions on PAO1 biofilm formation on different biomaterials.

Biofilm formation in wounds and on biomaterials is increasingly recognized as a problem. It therefore is important to focus on new strategies for eradicating severe biofilm-associated infections. The beneficial effects of maggots (Lucilia sericata) in wounds have been known for centuries. We hypothesized sterile maggot excretions and secretions (ES) could prevent, inhibit, and break down biofil...

متن کامل

Selective Antibiofilm Effects of Lucilia sericata Larvae Secretions/Excretions against Wound Pathogens

Background. Maggot debridement therapy (MDT), using Lucilia sericata larvae, represents efficient, simple, and low-cost therapy for the treatment of chronic wounds. Aim. The aim was to investigate the antibiofilm activity of maggot excretions/secretions (ES) against biofilm of wound isolates Staphylococcus aureus (S. aureus), Enterobacter cloacae (E. cloacae), and Proteus mirabilis (P. mirabili...

متن کامل

Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation.

Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biof...

متن کامل

Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.

OBJECTIVES Lucilia sericata maggots are successfully used for treating chronic wounds. As the healing process in these wounds is complicated by bacteria, particularly when residing in biofilms that protect them from antibiotics and the immune system, we assessed the effects of maggot excretions/secretions (ES) on Staphylococcus aureus and Pseudomonas aeruginosa biofilms, the clinically most rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 468  شماره 

صفحات  -

تاریخ انتشار 2010